Affine cellularity of Khovanov-Lauda-Rouquier algebras in type A
نویسندگان
چکیده
منابع مشابه
Representations of Khovanov-lauda-rouquier Algebras Iii: Symmetric Affine Type
We develop the homological theory of KLR algebras of symmetric affine type. For each PBW basis, a family of standard modules is constructed which categorifies the PBW basis.
متن کاملGraded Cellular Bases for the Cyclotomic Khovanov-lauda-rouquier Algebras of Type A
This paper constructs an explicit homogeneous cellular basis for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A over a field.
متن کاملFinite Dimensional Representations of Khovanov-lauda-rouquier Algebras I: Finite Type
We classify simple representations of Khovanov-Lauda-Rouquier algebras in finite type. The classification is in terms of a standard family of representations that is shown to yield the dual PBW basis in the Grothendieck group. Finally, we describe the global dimension of these algebras.
متن کاملRepresentations of Khovanov-lauda-rouquier Algebras and Combinatorics of Lyndon Words
We construct irreducible representations of affine KhovanovLauda-Rouquier algebras of arbitrary finite type. The irreducible representations arise as simple heads of appropriate induced modules, and thus our construction is similar to that of Bernstein and Zelevinsky for affine Hecke algebras of type A. The highest weights of irreducible modules are given by the so-called good words, and the hi...
متن کاملHomogeneous Representations of Khovanov-lauda Algebras
We construct irreducible graded representations of simply laced Khovanov-Lauda algebras which are concentrated in one degree. By-products of our construction are notions of skew shape and standard tableaux for arbitrary simply laced types.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2013
ISSN: 0024-6107
DOI: 10.1112/jlms/jdt023